diketahui sistem persamaan linear tiga variabel berikut

1) x + y = 6 (2) Seperti sudah dijelaskan sebelumnya, sistem persamaan linear bisa diselesaikan dengan berbagai metode. Berikut ini adalah penyelesaian sistem persamaan linear pada contoh di atas dengan menggunakan beberapa metode. Penyelesaian sistem persamaan linear dengan menggunakan metode grafik 1 Diketahui x + 3y + 2z = 16, 2x + 4y - 2z = 12, dan x + y + 4z = 20. Tentukan nilai x, y, z! Pembahasan: Substitusi x + y + 4z = 20 x = 20 - y - 4z x + 3y + 2z = 16 (20 - y - 4z) + 3y + 2z = 16 2y - 2z + 20 = 16 2y - 2z = 16 - 20 2y - 2z = -4 y - z = -2 2x + 4y - 2z = 12 2 (20 - y - 4z) + 4y - 2z = 12 40 - 2y - 8z + 4y - 2z = 12 Bentukumum sistem persamaan linear tiga variabel (SPLTV) adalah sebagai berikut. Dengan ketentuan, a, b, c ≠ 0. Dari ketiga bentuk umum SPLTV tersebut, kamu hanya akan mendapatkan satu solusi/ penyelesaian untuk setiap variabelnya, yaitu ( x, y, z ). Diketahuisistem persamaan linear tiga variabel. x+3y-2z= a . (1) 2x-3y+4z= b . (2) 3x-4y+8z= c . (3) Nilai 3x-2y+5z=18. Untuk mencari nilai a+b+c, maka jumlahkan ketiga persamaan tersebut. sehingga diperoleh. Dengan demikian, nilai a + b + c = 36. lirik lagu titik titik noda tertinggal di dalam dada. Sistem persamaan linear tiga variabel adalah salah satu materi dalam aljabar. Sumber persamaan linear tiga variabel atau SPLTV adalah salah satu materi yang dipelajari siswa di sekolah, khususnya sekolah menengah atas atau SMA. Materi ini termuat dalam mata pelajaran sederhana, sistem persamaan linear tiga variabel dapat diartikan sebagai sebuah persamaan aljabar yang melibatkan tiga variabel. Variabel-variabel tersebut biasanya ditandai dengan huruf-huruf penjelasan mengenai sistem persamaan linear tiga variabel atau Persamaan Linear Tiga VariabelDikutip dari buku Mathematics for Senior High School Year X yang diterbitkan oleh Yudhistira Ghalia Indonesia, sistem persamaan linear tiga variabel adalah sistem persamaan yang memiliki tiga variabel. Oleh karena itu, sistem ini dinilai lebih kompleks jika dibandingkan dengan sistem persamaan linear dua variabel karena sistem dengan tiga variabel ini adalah bentuk perluasan dari sistem persamaan linear dua persamaan linear tiga variabel memiliki bentuk umum, yakni ax + by + cz = d. Keterangan dari bentuk tersebut ialaha, b, c, d, x, y, dan z ∈ Ra adalah koefisien variabel xb adalah koefisien variabel yc adalah koefisien variabel zUntuk menyelesaikan persamaan linear tiga variabel dapat diselesaikan menggunakan metode subtitusi dan eliminasi. Kedua metode ini adalah metode yang dipelajari di sekolah untuk menyelesaikan masalah-masalah tertentu, tidak hanya persamaan linear tiga variabel, tetapi juga persamaan linear dua menyelesaikan persamaan sistem linear tiga variabel dapat diselesaikan menggunakan metode subtitus dan eliminasi yang telah dipelajari pada mata pelajaran matematika. Sumber subtitusi adalah cara mengganti salah satu nilai yang tidak diketahui yang mewakili nilai-nilai lainnya yang juga belum diketahui. Tentukan nilai dari x + 3y – 5z?Persamaan 1 sama dengan 216– 5y – 3z = 8 + 2y – 9zPersamaan 2 disubstitusi ke persamaan 3y = 7 – 28 + 2y – 9z + zy = 7 – 16 – 4y + 18z + zPersamaan 5 disubtitusi ke persamaan 4Substitusi nilai z ke persamaan 5Substitusi nilai y dan z ke persamaan 1Nilai x, y, dan z dimasukkan ke dalam persamaan pertanyaan dapat menghasilkan x + 3y – 5z = 3 + 32 - 5 1 = 3 + 6 – 5 = 4Jadi nilai dari x + 3y – 5z adalah eliminasi adalah metode dengan cara menghilangkan atau mengeliminasi suatu variabel yang belum diketahui nilainya. Berikut contoh soalnyaSebuah toko buah menjual berbagai jenis buah-buahan di antaranya mangga, jeruk dan anggur. Jika pembeli pertama membeli 2 kg mangga, 2 kg jeruk, dan 1 kg anggur dengan harga Rp pembeli kedua membeli 1 kg mangga, 2 kg jeruk, dan 2 kg anggur dengan harga Rp ketiga membeli 2 kg mangga, 2 kg jeruk, dan 3 kg anggur dengan harga Rp maka tentukanlah jumlah uang yang harus dibayar oleh seorang pembeli jika ia ingin membeli 1 kg mangga dan 2 kg jumlah uang yang harus dibayar oleh seorang pembeli jika ia ingin membeli 1 kg mangga dan 2 kg + 2y + z = 1x + 2y + 2z = 22x + 2y +3z = 3Pertama, eliminasi persamaan 1 dan 2 dengan menghilangkan nilai y, makax– z = - pers 4Kedua, eliminasi persamaan 1 dan 3 dengan menghilangkan nilai x dan y, maka-2z = pers 5Selanjutnya, masukan nilai z ke dalam persamaan 4x = + 30. 000 = masukan nilai z = dan x = ke pers.12 + 2y + = + 2y + = masukkan nilai dari x, y ke dalam persamaan pertanyaan, yaitu x + 2y = + 2 = Pada kesempatan kali ini kita akan membahas tentang contoh soal sistem persamaan linear tiga variabel SPLTV beserta pembahasannya. Di sini sudah kami rangkum beberapa latihan soal SPLTV untuk kita pelajari tentang SPLTVSistem persamaan linear tiga variabel SPLTV adalah sistem persamaan dengan 3 variabel berpangkat satu. SPLTV merupakan perluasan dari sistem persamaan linear dua variabel SPLDV.Untuk lebih lengkapnya, silakan baca di Sistem persamaan linear tiga variabel SPLTV.Contoh Soal SPLTV dan JawabannyaUntuk lebih memahami tentang sistem persamaan linear tiga variable, berikut kami sajikan beberpa contoh soal SPLTV beserta jawaban dan pembahasannya. Mari kita pelajari bersama. 1. Tentukan himpunan penyelesaian sistem persamaan linear tiga variabel + 5y – 3z = 36x + 8y -5z = 7-3x + 3y + 4y = 15Pembahasan2x + 5y – 3z = 3 … 16x + 8y -5z = 7 … 2-3x + 3y + 4z = 15 … 3Eliminasikan variabel z menggunakan 1 dan 22x + 5y – 3z = 3 ×5 ⇔ 10x + 25y – 15z = 15 6x + 8y -5z = 7 ×3 ⇔ 18x + 24y -15z = 21 –-8x + y = -6 … 4Eliminasikan variabel z menggunakan 1 dan 32x + 5y – 3z = 3 ×4 ⇔ 8x + 20y – 12z = 12 -3x + 3y + 4z = 15 ×3 ⇔-9x + 9y + 12z = 45 +-x + 29y = 57 … 5Eliminasikan variabel y menggunakan 4 dan 5-8x + y = -6 ×29 ⇔ -232x + 29y = -174 -x + 29y = 57 ×1 ⇔ -x + 29y = 57 –-231x = -231x = 1Substitusikan x ke 4-8x + y = -6-81 + y = -6-8 + y = -6y = 8 – 6y = 2Kemudian, subsitusikan x dan y ke 12x + 5y – 3z = 321 + 52 – 3z = 32 + 10 – 3z = 312 – 3z = 3– 3z = 3 -12 = -9z = -9/-3z = 3Jadi, himpunan penyelesaiannya adalah {1, 2, 3}2. Temukan himpunan penyelesaian sistem persamaan berikutx + y + z = -6x + y – 2z = 3x – 2y + z = 9Pembahasanx + y + z = -6 … 1x + y – 2z = 3 … 2x – 2y + z = 9 … 3Tentukan persamaan x melalui 1x + y + z = -6 ⇔ x = -6 – y – z … 4Substitusikan 4 ke 2x + y – 2z = 3-6 – y – z + y – 2z = 3-6 – 3z = 33z = -9z = -3Substitusikan 4 ke 3x – 2y + z = 9-6 – y – z – 2y + z = 9-6 – 3y = 9– 3y = 15y = 15/-3y = -5Substitusikan z dan y ke 1x + y + z = -6x – 5 – 3 = -6x – 8 = -6x = 8 – 6x = 2Jadi, himpunan penyelesaiannya adalah {2, -5, -3}3. Toko alat tulis pak rudi menjual alat tulis berisi buku, spidol, dan tinta dalam 3 jenis paket sebagai A 3 buku, 1 spidol, 2 tinta seharga Rp B 2 buku, 2 spidol, 3 tinta seharga C 1 buku, 2 spidol, 2 tinta seharga harga 1 buah masing-masing item !PembahasanMisalb harga 1 buah bukus harga 1 buah spidolt harga 1 buah tintaMaka, model matematikanya adalah 3b + s + 2t = … 12b + 2s + 3t = … 2b + 2s + 2t = … 3Eliminasikan variabel t menggunakan 1 dan 23b + s + 2t = ×3 ⇔ 9b + 3s + 6t = + 2s + 3t = ×2 ⇔ 4b + 4s + 6t = –5b – s = … 4Eliminasikan variabel t menggunakan 1 dan 33b + s + 2t = + 2s + 2t = –2b – s = = 2b – … 5Substitusikan 5 ke 45b – s = – 2b – = – 2b + = = – = = ÷ 3b = nilai b ke 5s = 2b – = 2 – = – = nilai b dan s ke 3b + 2s + 2t = + 2 + 2t = + + 2t = + 2t = = – = = ÷ 2t = harga 1 buah buku adalah 1 buah spidol adalah dan 1 buah tinta adalah 3 bersaudara Lia, Ria, dan, Via berbelanja di toko buah. Mereka membeli Apel, Jambu, dan Mangga dengan hasil masing-masing sebagai berikutLia membeli dua buah Apel, satu buah Jambu, dan satu buah Mangga seharga membeli satu buah Apel, dua buah Jambu, dan satu buah Mangga seharga membelli tiga buah Apel, dua buah Jambu, dan satu buah Mangga seharga harga 1 buah Apel, 1 buah Jambu, dan 1 buah Mangga?PembahasanMisala = Harga 1 buah Apelj = Harga 1 buah Jambum = Harga 1 buah ManggaMaka, model matematikanya adalah2a + j + m = … 1a + 2j + m = … 23a + 2j + m = … 3Eliminasikan variabel j dan m menggunakan 2 dan 3a + 2j + m = + 2j + m = –-2a = = variabel m menggunakan 1 dan 2, dan substitusikan nilai a2a + j + m = + 2j + m = –a – j = = a – = – = nilai a dan j ke 12a + j + m = + + m = + + m = + m = = – = harga 1 buah Apel adalah 1 buah Jambu adalah dan 1 buah Mangga adalah Carilah himpunan penyelesaian dari SPLTV – 6y + 12z = 602x -4y + 4z = 46x – 2y + 4z = 15PembahasanSistem persamaan linear tiga variabel tersebut bisa disederhakan menjadi3x – 6y + 12z = 60 ÷ 3 ⇔x – 2y + 4z = 20 … 12x -4y + 4z = 46 ÷ 2 ⇔ x – 3y + 6z = 23 … 2x – 2y + 4z = 15 … 3Perhatikan bahwa 1 dan 3 mempunyai sisi kiri yang sama x – 2y + 4z namun sisi kanan berbeda 20 ≠ 15. Jadi SPLTV tersebut tidak mungkin sistem persamaan linear tiga variabel tersebut tidak memiliki himpunan beberapa contoh soal SPLTV beserta jawaban dan pembahasannya. Semoga dengan mempelajari soal-soal di atas, anda bisa semakin mahir dalam menyelesaikan persoalan sistem persamaan linear tiga variabel dari rumuspintar, selamat belajar. Diketahui sistem persamaan linear tiga variabel berikut. 3x — y = 4. ... 1x + 3z = -2. ...22y — z = 18. ...3Himpunan penyelesaian dari sistem dari sistem persamaan tersebut adalah.. 3x - y = 4, maka y = 3x - 4... 1x + 3z = -2 ...22y - z = 18, maka z = 2y - 18...3substitusi persamaan 1 dan 3 ke persamaan 2x + 3z = -2x + 32y - 18 = -2x + 6y - 54 = -2x + 63x - 4 = -2 + 54x + 18x - 24 = 5219x = 76x = 4substitusi x = 4 ke persamaan 1y = 3x - 4y = 12 - 4y = 8substitusi y = 8 ke persamaan 3z = 2y - 18z = 16 - 18z = -2HP x, y, z = 4, 8, -2 PembahasanDiketahui sistem persamaan linear tiga variabel x+3y-2z=a....1 2x-3y+4z=b....2 3x-4y+8z=c....3 Nilai 3x-2y+5z=18 . Untuk mencari nilai a+b+c, maka jumlahkan ketiga persamaan tersebut. sehingga diperoleh Dengan demikian, nilai a + b + c = 36 .Diketahui sistem persamaan linear tiga variabel Nilai . Untuk mencari nilai a+b+c, maka jumlahkan ketiga persamaan tersebut. sehingga diperoleh Dengan demikian, nilai .

diketahui sistem persamaan linear tiga variabel berikut